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ABSTRACT

Physics-based synthesis of tanpura drones requires accurate simu-
lation of stiff, lossy string vibrations while incorporating sustained
contact with the bridge and a cotton thread. Several challenges
arise from this when seeking efficient and stable algorithms for
real-time sound synthesis. The approach proposed here to ad-
dress these combines modal expansion of the string dynamics with
strategic simplifications regarding the string-bridge and string-thread
contact, resulting in an efficient and provably stable time-stepping
scheme with exact modal parameters. Attention is given also to
the physical characterisation of the system, including string damp-
ing behaviour, body radiation characteristics, and determination of
appropriate contact parameters. Simulation results are presented
exemplifying the key features of the model.

1. INTRODUCTION

Among mechanically-induced sound effects naturally afforded by
musical instruments, the generation of overtones in tanpura drone
playing is one of the more spectacular and intriguing examples. In
Indian musical tradition, the phenomenon is known as jvari (mean-
ing ‘life-giving’), and arises from the impactive interaction of the
vibrating string with a hard-surfaced bridge. The player fine-tunes
the effect by carefully positioning a thin thread between the bridge
and the string (see Fig. 1).

As a vibrational phenomenon, the jvari effect has attracted
scientific interest for almost a century, starting with the musical
acoustics poineering work by Raman [1]. Several ways of analysing
and modelling the vibrations of the tanpura and other ‘flat-bridge’
instruments such as the sitar, veena, and biwa have been proposed
since, with the aims ranging from theoretical understanding (usu-
ally relying on simplifying assumptions regarding the nature of
the interaction [2, 3, 4]) to more practical discrete-time simula-
tion [5, 6] including several synthesis oriented studies [7, 8]. The
problem also naturally bears some resemblance to various other
cases involving collisions, including string-fingerboard contact in
the guitar [9, 10], violin [11], and bass guitar [12, 13, 14].

Despite these advances, efficient and realistic synthesis of the
sound of flat-bridge string instruments appears to have remained a
somewhat elusive goal. One of the original difficulties, namely that
of potential instability when incorporating collision forces, has re-
cently been addressed more widely within a finite-difference con-
text, by construction of time-stepping schemes that respect the en-
ergy balance inherent to the underlying continuous-domain model
[15, 16, 17, 18]. Tanpura models based on such energy meth-
ods can reproduce the jvari effect by simulating distributed string-
bridge collisions [17, 19, 20]. However the algorithms that im-
plement these tanpura models are not particularly suited to sound
synthesis because of the high computational burden resulting from
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Figure 1: Schematic depiction of the tanpura string geometry (with altered
proportions for clarity). The string termination points of the model are
indicated with the vertical dashed lines.

the reliance on iterative solvers and from the high sample rates
needed to alleviate numerical dispersion.

This paper aims to formulate a leaner discrete-time tanpura
string model requiring significantly reduced computational effort,
but retaining much of the key sonic features of the instrument.
Two aspects that distinguish this challenge somewhat from other
cases of string-barrier interaction are (a) the sustained nature of
the impactive interaction (with a high potential for audible high-
frequency artefacts, including aliasing) and (b) the sensitivity of
the jvari to some of the system parameters and to discretisation er-
rors. The key features of the proposed model, presented in Section
2, can be summarised as follows:

• the spatially distributed string-bridge collision forces are sup-
pressed to a single variable, which - in conjunction with neglect-
ing contact damping and using a unity exponent in the contact
law - allows updating the numerical system without the use of
an iterative solver;

• the thread interaction, which effects a ‘softer’ string termina-
tion, is explicitly modelled as a local spring-damper connection;

• a modal expansion approach is utilised, which allows formulat-
ing a numerical model with exact modal frequencies and damp-
ing;

• discretisation is performed on a first-order partial derivative form
of the modal differential equations, which facilitates the use of a
two-point discrete gradient for discretisation of the bridge con-
tact force;

• numerical stability is independent of the system parameters and
the temporal step; the only numerical constraint is that the mode
series is truncated at Nyquist in order to avoid mode aliasing.

For realistic synthesis of tanpura drones, one also needs to de-
termine appropriate system parameters, including those related to
string damping, bridge and thread contact, and sound radiation;
this is discussed in Section 3. Exemplifying simulation results are
then presented and discussed in Section 4, followed by concluding
remarks and perspectives in Section 5.
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2. TANPURA STRING MODEL

2.1. Model Equations

The transversal displacement y(x, t) of the string depicted in Fig.
1, with the spatial domain defined as x ∈ [0, L] and t denoting
time, may be described by:

ρA
∂2y

∂t2
= T

∂2y

∂x2
− EI ∂

4y

∂x4
− γ(β)

∂y

∂t

+ Fc(x, t) + Fb(x, t) + Fe(x, t), (1)

in which ρ, A, T , E, and I are mass density, cross-sectional area,
tension, Young’s modulus, and moment of inertia, respectively.
Assuming simply supported ends, the boundary conditions are

y(x, t)
∣∣∣
x=0,L

= 0,
∂2y

∂x2

∣∣∣
x=0,L

= 0. (2)

Frequency-dependent string damping is incorporated by defining
the parameter γ(β) in (1) as:

γ(β) = 2ρA
[
σ0 +

(
σ1 + σ3β

2) |β| ], (3)

where β is the wave number and σ0,1,3 are fit parameters. The
interactions with the cotton thread, the bridge and a plucking fin-
ger are modelled using the force densities Fc(x, t), Fb(x, t) and
Fe(x, t), respectively. These are defined here in a simplified form
by pre-determining their spatial distibutions, hence modelling each
as (z = c,b, e):

Fz(x, t) = ψz(x)Fz(t), (4)

where ψz(x) are spatial distribution functions of the form

ψz(x) =

{
π

2wz
cos
[
π
wz

(x− xz)
]

: x ∈ Dz
0 : otherwise

(5)

in which Dz = [xz−1
2
wz, xz−1

2
wz] denotes a spatial domain of

width wz and centre position xz . Equation (5) is a good approx-
imation to the force profile typically observed in the initial vibra-
tions as computed with distrubuted contact models (see the left
plot of Fig. 2). In addition this form provides a convenient way of
exciting mainly the first mode of the string (by setting xe = 1

2
L,

we = L). The impactive contact with the bridge is modelled here
using a lossless contact law with unity exponent and elasticity con-
stant kb:

Fb(t) = kbbhb − yb(t)c, (6)

in which byc denotes u(y) ·y, where u(y) is the unit step function.
Given that the string never detaches from the cotton thread, this
interaction can be modelled as a simple spring-damper connection

Fc(t) = kc [hc − yc(t)]− rc
∂yc

∂t
, (7)

where rc is a damping parameter. The term yz(t) (z = b, c) in
equations (6) and (7) represents a spatially averaged value of the
string displacement at xz:

yz(t) =

∫ xz+wz/2

xz−wz/2

ψz(x) y(x, t)dx. (8)

The contact potential energies are

Vc(yc) =
kc

2
[hc − yc]2 , Vb(yb) =

kb

2
bhb − ybc2, (9)
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Figure 2: Left: string motion snaphot obtained with a model simulating
distributed bridge contact [17]. The profile of the orange surface indicates
force density, and the dash-dot line indicates the corresponding instanta-
neous central contact point. Right: Variation of the central contact point
over the first 12ms. The flat dashed lines indicates periods of no contact.

where both height constants hc and hb are normally zero to en-
sure grazing contact at equilibrium. From the second equation it is
straightforward to derive that

Fb(t) = −∂Vb

∂yb
. (10)

The forces exerted by the string at the left-end termination (‘o’)
and the nut end (‘n’) are

Fo(t) = T
∂y

∂x

∣∣∣
x=0
− EI ∂

3y

∂x3

∣∣∣
x=0

, (11)

Fn(t) = −T ∂y
∂x

∣∣∣
x=L

+ EI
∂3y

∂x3

∣∣∣
x=L

. (12)

Since Fo(t) is generally much smaller than Fc(t) and Fb(t), the
total force exerted by the string on the bridge can be calculated as

Fd(t) = −Fc(t)− Fb(t). (13)

Approximations to the emitted sound can be found by filtering
Fd(t) and Fn(t), where the filters have transfer functions that ap-
proximate measured body radiation responses (see Section 3.3).

The plucking force is specified here in highly simplified form:

Fe(t) =

{
ae sin2 [(π/τe)he(t− te)] : t ∈ Te

0 : otherwise
, (14)

where Te = [te, te + τe] and with

he(t) =
1

2

[
t+

τe sinh(βet/τe)

sinh(βe)

]
. (15)

As seen in Fig. 3, the parameter βe > 0 controls the attack and
release slopes of the plucking function, which allows mimicking
the gentle style in which tanpura strings are generally plucked.
The other control parameters are the amplitude ae and the over-
all pluck signal timespan τe. More sophisticated plucking models
have been proposed (see, e.g. [9]) but may not be needed given
that the characteristics of the tanpura sound are heavily dominated
by the nonlinearity of the string-bridge interaction, with relatively
little dependence on the intricacies of the finger-string interaction.
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Figure 3: Normalised plucking force signal for four values of βe.
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2.2. Modal Expansion

The solution of (1) can be expressed as a superposition of the nor-
mal modes of the string (indexed with i):

y(x, t) =

M∑
i=1

vi(x) ȳi(t), (16)

where ȳi(t) denotes the mode displacement and vi(x) = sin(βix)
is the corresponding mode shape (spatial eigenfunction) for the
boundary conditions given in (2), with βi = iπ/L. After substi-
tution of (16) into (1), then multiplying with vi(x) and applying
a spatial integral over the length of the string, one obtains that the
dynamics of each of the modes is governed by:

m
∂2ȳi
∂t2

= −kiȳi(t)− ri ∂ȳi
∂t

+
∑

z=c,b,e

F̄z,i(t), (17)

in which m = 1
2
ρAL is the modal mass (which is the same for all

modes), and where ki = 1
2
L
(
EIβ4

i + Tβ2
i

)
and ri = 1

2
Lγ(βi)

are the elastic and damping constants of the mode, respectively.
Within the constraint ri < 2

√
kim, the modal frequencies are

ωi =
√
ki/m− α2

i , where (in accordance with (3))

αi = ri/(2m) = σ0 + σ1βi + σ3β
3
i (18)

are the modal decay rates. The force terms in (17) are

F̄z,i(t) =

∫ L

0

vi(x)ψz(x)Fz(t)dx = gz,iFz(t), (19)

where1:

gz,i =
π2 sin(βixz) cos(βiwz/2)

π2 − β2
iw

2
z

. (20)

In modal form, the spatially averaged string displacement at x =
xz (z = c,b) is

yz(t) =

∫ xz+wz/2

xz−wz/2

ψz(x)

M∑
i=1

vi(x)ȳi(t)dx =

M∑
i=1

gz,iȳi(t),

(21)
and the nut force can be expanded as

Fn(t) =

M∑
i=1

[
− Tv′i(L) + EIv′′′i (L)

]
ȳi(t), (22)

where v′i(x) and v′′′i (x) denote the first and third spatial derivative
of vi(x), respectively.

2.3. Discretisation in Time

We may re-formulate (17) in first-order form as follows:
∂ȳi
∂t

=
p̄i
m
, (23)

∂p̄i
∂t

= −kiȳi − ri ∂ȳi
∂t

+
∑

z=c,b,e

gz,iFz(t), (24)

in which p̄i represents the modal momentum. Gridding time by
denoting yn ≡ y(n∆t), where ∆t = fs

−1 is the temporal step,
we introduce the difference and sum operators

δyn = yn+1
2 − yn−12 ≈ ∆t

∂y

∂t

∣∣∣
t=n∆t

, (25)

µyn = yn+1
2 + yn−12 ≈ 2 y

∣∣∣
t=n∆t

. (26)

1Note that care has to be taken in evaluating (20) for βi = wz/π, using
limβi→wz/π gz,i =

π
4
sin(βixz).

The mid-point-in-time discretisation of equations (23) and (24)
can then be written as

δȳ
n+1

2
i

∆t
=
µp̄

n+1
2

i

2m
, (27)

δp̄
n+1

2
i

∆t
= −ki µȳ

n+1
2

i

2
− ri δȳ

n+1
2

i

∆t
+

∑
z=c,b,e

gz,iF
n+1

2
z , (28)

which is equivalent to applying the trapezoidal rule. The exter-

nal force is calculated as 1
2
µF

n+1
2

e , and the cotton thread force is
obtained by discretising (7):

F
n+1

2
c = kc

(
hc − 1

2
µy

n+1
2

c

)
− rc

δy
n+1

2
c

∆t
. (29)

Special care has to be taken regarding stability in discretising the
bridge contact force, due to its non-analytic form [15, 16]. A suit-
able numerical term is obtained by discretising (10), which yields
the two-point discrete gradient:

F
n+1

2
b = −δV

n+1
2

b

δy
n+1

2
b

= −Vb(yn+1
b )− Vb(ynb )

yn+1
b − ynb

. (30)

Using the scaled momentum value q̄ni = (∆t/(2m))p̄ni , the sys-
tem equations (27,28) can be written more conveniently as

δȳ
n+1

2
i = µq̄

n+1
2

i , (31)

δq̄
n+1

2
i = −aiµȳn+1

2
i − biδȳn+1

2
i + ξ

∑
z=c,b,e

gz,iF
n+1

2
z , (32)

where ξ = ∆t2/(2m), ai = 1
4
ki∆t

2 m
−1, and bi = 1

2
ri∆tm

−1.

Once the force termsF
n+1

2
z are known, the dynamics of each mode

can be simulated by solving for ȳn+1
i and q̄n+1

i at each time step.
However, unless a very small temporal step is used, this procedure
would lead to severe numerical dispersion. Therefore the coeffi-
cients in (31,32) are replaced by the values (a∗i , b

∗
i ) below, which

ensures that the modes have exact modal frequencies and damping:

a∗i =
1− 2RiΩi +R2

i

1 + 2RiΩi +R2
i

, b∗i =
2
(
1−R2

i

)
1 + 2RiΩi +R2

i

, (33)

where Ri = exp(−αi∆t) and Ωi = cos(ωi∆t). This is readily
verified by testing the (31,32) without the force terms for the ansatz

ȳni = exp(sdn∆t), q̄ni = C exp(sdn∆t), (34)

where sd = jωd − αd is the complex resonance frequency of the
discretised mode, with j=

√
−1, and C is a complex constant. This

leads to a characteristic equation in zd= exp(sd∆t):

z2
d − 2

(
1− ai

1 + ai + bi

)
zd +

(
1 + ai − bi
1 + ai + bi

)
= 0. (35)

After substituting (33) this becomes

z2
d − 2Ri cos(ωi∆t)zd +R2

i = 0, (36)

which has the solution zd = Ri exp(ωi∆), from which it follows
that sd = jωi − αi, i.e. the discrete system has exact modal fre-
quency and damping. The above coefficient replacement can be
thought of in terms of the following adapted elasticity and damp-
ing values:

ki → k∗i =
4ma∗i
∆t2

, ri → r∗i =
2mb∗i
∆t

. (37)
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An accompanying restriction - necessary to avoid aliased modes -
is that none of mode frequencies exceeds the Nyquist frequency,
i.e. ωi < π/∆t, which defines the largest possible truncation of
the modal series expansion in (16). Note that application of the
impulse invariant transform to (17 gives a similar result but, cru-
cially, yields a different force term coefficient, which precludes
establishing a numerical energy balance (see Section 2.6).

2.4. A Vector-Matrix Update Form

If we stack the variables in column vector form, for M modes we
may write the system equations as

δȳn+1
2 = µq̄n+1

2 , (38)

δq̄n+1
2 = −Aµȳn+1

2 −Bδȳn+1
2 + ξ

∑
z=c,b,e

gzF
n+1

2
z , (39)

where A and B are diagonal matrices with diagonal entries Aii =
a∗i and Bii = b∗i , and where column vectors gz hold the values
defined with (20). A convenient vector update is then found by
using (38) to define s̄ = δȳn+1

2 = µq̄n+1
2 , and substituting

ȳn+1 = s̄ + ȳn, q̄n+1 = s̄− q̄n, (40)

in (39), which allows solving for s̄ with

s̄ = ū + ebF
n+1

2
b + ecF

n+1
2

c , (41)

where eb = ξJ
−1
gb and ec = ξJ

−1
gc, with J = I + A + B, and

where
ū = J

−1
[
2 (q̄n −Aȳn) + ξgeF

n+1
2

e

]
. (42)

Hence once the contact forces F
n+1

2
b and F

n+1
2

c are known, eq.
(41) immediately yields the step s̄, after which both ȳn+1 and
q̄n+1 can be updated using (40). A further update comprises eval-

uating the nut force F
n+1

2
n with the vector form of (22). Note that

since the matrices J and A are diagonal, the matrix operations in
(42) can be implemented very efficiently via componentwise mul-
tiplication/division.

2.5. Solving for the Contact Forces

In order to solve for the forces F
n+1

2
b and F

n+1
2

c , (41) is pre-
multiplied with gTb, which (also using sb = yn+1

b − ynb ) yields
the scalar equation

sb = ub + θbbF
n+1

2
b + θbcF

n+1
2

c , (43)

where ub = gTbū, θbb = gTbeb and θbc = gTbec. Similarly, one
can pre-multiply (41) with gTc , giving

sc = uc + θbcF
n+1

2
b + θccF

n+1
2

c , (44)

with uc = gTc ū and θcc = gTcec. Setting φc = kc/2 + rc/∆t, the
numerical thread force in equation (29) can be written in terms of
sc as

F
n+1

2
c = kc (hc − ync )− φcsc. (45)

Combining with (44) to eliminate sc then gives

F
n+1

2
c = vc − βcF

n+1
2

b , (46)

∆yn ≤ 0?

u ≤ −∆yn?

yes

no

yes

no

sb=−u

yes

no

sb=
2ϕ∆yn− u−

√
u2−4ϕ∆yn(u+∆yn)

2(1 + ϕ)

sb=
2ϕ∆yn − u

1 + ϕ

sb=− 1
2
u+ 1

2

√
u2 + 4ϕ(∆yn)2u ≥ ∆yn(ϕ− 1)?

Figure 4: Analytic solution of equation (48), where ϕ = θkb/2
and ∆yn = hb − ynb .

where

vc =
kc (hc − ync )− φcuc

1 + φcθcc
, βc =

φcθbc

1 + φcθcc
. (47)

Now substituting this into (43) and evaluating the bridge force term
with (30) one obtains the nonlinear scalar equation

sb + u+ θ
Vb(sb + ynb )− Vb(ynb )

sb
= 0, (48)

where θ = θbb − βcθbc and u = −ub − θbcvc. This equation is
analytically solvable according to four distinct cases [18] as shown
in Fig. 4. Once sb is known the bridge force can be calculated
accordingly and the thread force is updated with (46).

2.6. Numerical Energy Balance and Stability

The energy of the numerical model can be calculated for any time
instant n by summing up the mode energies and adding the poten-
tials of the bridge and thread interaction:

Hn =

M∑
i=1

[
1

2m
(p̄ni )2 +

k∗i
2

(ȳni )2

]
+ Vc(ync ) + Vb(ynb )

=
(q̄n)Tq̄n + (ȳn)TAȳn

ξ
+
kc

2
[hc−ync ]2 +

kb

2
bhb−ynb c2.

(49)

Multiplying the left-hand side of (39) with (µq̄n+1
2 )T and the right-

hand side with (δȳn+1
2 )T yields, after a few further algebraic ma-

nipulations, the energy balance

δHn+1
2

∆t
= Pn+1

2 −Qn+1
2 , (50)

where
Pn+1

2 = 1
2
∆t−1gTeδȳ

n+1
2 µF

n+1
2

e (51)

is the input power and

Qn+1
2 =

(δȳn+1
2 )TBδȳn+1

2

ξ∆t
+
( rc

∆t2

)(
δy
n+1

2
c

)2

(52)

is the dissipated power. From inspecting (33), it follows that the
diagonal matrices A and B can only contain real-valued positive
elements and are thus positive definite. This implies unconditional
numerical stability, as both Hn and Qn+1

2 are consequently guar-
anteed to be non-negative (i.e. the total energy can increase only
through external force excitation). It is worthwhile pointing out
that the energy balance in (50) relies not only on the use of the
discrete gradient in (30), but also on the fact that equations (4) and
(8) utilise the same spatial distribution function, which ensures that
the vector terms gb are eliminated in the calculation process.
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3. PHYSICAL CHARACTERISATION

3.1. String Parameters

The string parameters L, A, E and ρ are readily available for a
given string, and the tension T can be set accordingly such that
the correct fundamental frequency results. The moment of inertia
is calculated directly from the string radius r as I = 1

4
πr4. The

damping coeffcients σ0,1,3 in (18) can be estimated from a plucked
string signal measured with a freely vibrating string (i.e. no bridge
contact), for example as in [21]. Given the importance of the role
of string damping in the jvari effect, it is worthwhile noting that
these coefficients can be expressed directly in terms of the phys-
ically motivated fit parameters used by Woodhouse in eq. (8) of
[21] for characterising guitar strings:

σ0 ≈ 1
2
ηA, σ1 ≈ 1

2
c ηF , σ3 ≈ 1

2
c λ ηB , (53)

with c =
√
T/(ρA) and λ = EI/T , and where ηA, ηF , and

ηB represent “air”, “friction”, and “bending” damping, respec-
tively. Woodhouse’s modal decay rate form, which was adapted
from [22], generally allows an excellent low-parameter fit to mea-
sured string data over a wide frequency range [22, 21]. For this
reason equation (18) is preferred here over the even-order form
αi =

∑
j σjβ

2j
i often used in sound synthesis.

Table 1: C3 string parameters

string parameters contact parameters
L 1.0 [m] xb 10×10−3 [m]
ρA 4.83 ×10−4 [kg/m] wb 2.0×10−3 [m]
T 33.1 [N] kb 4.39×108 [N/m]
EI 6.03 ×10−5 [Nm2] xc [4.0 - 8.0]×10−3 [m]
σ0 0.6 [s−1] wc 1.2×10−3 [m]
σ1 6.5 ×10−3 [m/s] kc 1.2×105 [N/m]
σ3 5.0 ×10−6 [m3/s] rc 1.2 [kg/s]

3.2. Contact Parameters

The rationale for using a contact law with unity exponent is based
on an analogy to contact between two cylinders with parallel axes.
From Hertzian contact theory, the force F is proportional to the
depth of indentation d for this case [23]:

F =
π

4
E∗l d, (54)

where l is the contact length, with the contact modulus given as

E∗ =

(
1− ν2

1

2E1
+

1− ν2
2

2E2

)−1

(55)

for materials with Young’s moduli E1, E2 and Poisson’s ratios
ν1, ν2. This law is independent of the radii of the two cylinders and
thus is applicable also to contact between a cylindrical string and
a nearly flat surface. By loosely equating d and ∆y = hb − yb an
estimate of the elastic constant in (6) is found as kb = 1

4
πE∗wb,

with E∗ evaluated using the values for steel (or bronze when ap-
plicable) and ivory in eq. (55). The cotton thread contact param-
eters are not as easily determined and are empirically set here as
kc = wc · 108 N/m and rc = kc · 10−6 N/m. The parameters used
for a one metre long male tanpura string (steel, radius = 0.14mm)
when tuned to the note C3 (f1 = 130.81Hz) are listed in Table 1.
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Figure 5: Tanpura body magnitude response measured with an impact
hammer applied at the bridge (top) and the nut (bottom), and with a micro-
phone positioned at 80cm from the instrument. For clarity, the responses
have been offset by 50dB. The grey shaded area indicates the range in
which the fundamental frequency of a tanpura string would normally fall.

3.3. Body Radiation Filters

Fig. 5 shows the body magnitude responses of a tanpura as ob-
tained with impact hammer experiments. The fundamental fre-
quency of a tanpura string will generally fall in the range between
that of a C2 string (f1 = 65.4Hz) and a C4 string (f1 = 198Hz).
As the plot shows, the body radiates less powerfully in this fre-
quency range, to a first approximation acting as a high-pass filter.
The black thin solid lines in Fig. 5 indicate the responses of 2048-
tap FIR filters obtained by truncating the measured body impulse
responses. Significantly more efficient body filters models can be
achieved in IIR form (see, e.g. [24]).

4. SIMULATION RESULTS

4.1. Simulation of a C3 String

Fig. 6 shows a small selection of string profile snapshots obtained
with the simulation of a C3 string, using the parameters listed in
Table 1, with xc = 5mm. To exemplify the role of the bridge and
the thread, the string was excited using ae = −0.4N, τe = 50ms,
βe = 30, xe = L/2 and we = L, effectively initialising the string
approximately to the first mode shape. As seen in Fig. 6(a) the
string motion becomes progressively Helmholz-like, as also found
in earlier studies [22, 19]. The zoomed view in Fig. 6(b) shows
that a small level of string motion is allowed at the thread position.
The bridge on the other hand is far less compressive, approximat-
ing a one-sided constraint. The role of the cotton thread connection
can be summarised as follows: the thread damping provides addi-
tional attenuation of the high-frequency standing waves along the
string length between the left termination and the bridge, which
in combination with the lower elasticity constant effects a ‘soft’
termination (somewhat similar to a violin string stopped by a fin-
ger rather than the nut). This avoids the harsher sound that would
result with a (near) rigid termination.

Fig. 7 shows how the displacement at the bridge evolves over
time. The string-bridge compression is extremely small (less than
3 × 10−8m over the whole duration). The plots demonstrate the
emergence of a high-frequency wavepacket in the waveforms. Due
to string stiffness this precursive wave arrives back at the bridge
before the lower frequencies, thus escaping the periodic closing of
the gap between the string and the bridge [3]. Running the simu-
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Figure 6: Snapshots of the profile of a C3 string excited using the param-
eters xe = L/2, we = L. The sampling frequency is 44.1kHz. Left: full
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the bridge (Db). For both plots, the time instants are t = 49.0ms (dash-
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74 76 78

 y
b
 [
µ

m
]

0

10

20

210 212 214

0

10

20

346 348 350

0

10

20

482 484 486

 y
b
 [
µ

m
]

0

10

20

618 620 622

0

10

20

754 756 758 760

0

10

20

time [ms]

890 892 894 896

 y
b
 [
µ

m
]

0

10

20

time [ms]

1026 1028 1030 1032

0

10

20

time [ms]

1164 1166 1168

0

10

20

Figure 7: Evolution of the displacement (yb) at the bridge.

lation with EI = 0 confirms that the precursor, which is the prin-
cipal oscillatory manifestation of the jvari effect, disappears in the
absence of string stiffness. As can be gleaned from the plots, the
spectral centroid of the precursor gradually diminishes over time,
which is due to the string damping being frequency-dependent.
The rate at which the centroid descends also depends on the dis-
tance between the bridge and the thread [3]; this is one of the sonic
features that tanpura players control when, in preparation of a per-
formance, they adjust the thread position in search of a desired
jvari.

Fig. 8(a) shows the global evolution of the driving forces Fd

and Fn. Comparison with the corresponding pressure signals pd

and pn shown in Fig. 8(b) highlights the difference in terms of
the initial attack transient, which is almost completely absent from
the radiation signals; this is because they contain much less of
the low-frequency excitation components and are dominated by
the frequencies that make up the precursor. The aural impres-
sion is therefore that the sound grows in amplitude over the ini-
tial 500ms, which is contrary to our normal experience of plucked
strings. These results suggest that the high-pass nature of the body
responses (explained earlier in Section 3.3) is a key ingredient in
producing this effect, which is further enhanced by the frequency-
dependent sensitivity of human hearing [3].
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Figure 8: Waveforms of the bridge and nut driving force signals (a) and
the corresponding radiation pressure signals (b).
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Figure 9: Spectral envelopes of the bridge radiation pressure signal (a)
and the nut radiation signal (b), for different sampling frequencies. In
each plot, the magnitude spectrum obtained with eight times oversampling
(fs =352.8kHz) is plotted in light grey.

4.2. Convergence

In a sound synthesis context, it is natural to use a standard audio
rate. However mainly due to the nonlinear phenomena, the model
will not give exactly the same result as for higher sampling fre-
qencies, even when the number of modes is kept the same. Fig. 9
shows the magnitude spectra (light grey line) of the radiation sig-
nals pd and pn, as obtained with for a C3 string using eight times
oversampling. In each of the plots the thin black line represents the
corresponding spectral envelope while the thicker, red line indi-
cates the envelope of the spectrum obtained using fs = 44.1kHz.
For both sampling frequencies, the number of modes was set to
133, which corresponds to truncating the mode series at 20kHz.
The plots show that while there is little difference between the nut
radiation signals, the 44.1kHz model bridge signal is artificially
strong in amplitude at high frequencies (f > 15kHz). Percep-
tually, the discrepancy is very small but nevertheless noticable.
Informal listening experiments indicated that oversampling by a
factor two (i.e. using fs = 88.2kHz) is sufficient to reduce any
differences to almost unnoticable levels.
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Figure 10: Matlab computation times for one second of simulated sound
when using a 44.1kHz sampling frequency. The results were obtained us-
ing a machine with an i7 CPU 2.93GHz processor and 4GB RAM.

4.3. Algorithmic Efficiency

The Matlab runtime for one second of simulation (see Fig. 10)
is only mildly dependent on the number of modes included and
does not exceed 2.5 seconds for any practical string (compared
to 2 minutes with the model in [19], which requires four times
oversampling in order to alleviate numerical dispersion). A signif-
icant speed-up is achievable with an optimised C implementation,
bringing the proposed model in range for real-time application on
standard processors. Note that the filtering of the nut and bridge
driving signals is not included in the computational operations that
are time-measured. As is evident from the plot, more than half of
the computational effort comprises updating equation (42), while
solving for the contact forces takes up an almost negligible frac-
tion.

4.4. Drone Synthesis

In order to get a first glimpse of what a virtual-acoustic tanpura
would sound like, four seperate string models were tuned to pro-
duce a panchamam raga pattern of G2-C3-C3-C2. The total bridge
and nut driving forces are now

F̂d = −
4∑
j=1

(Fc,j + Fb,j) , F̂n =

4∑
j=1

Fn,j , (56)

where subscript j indexes the strings. These are filtered as before
with the body radiation filters, with the filter outputs pd and pn

assigned to the left and right channel of an audio signal; a sound
example can be found on the accompanying webpage2 alongside
further supporting material. Fig. 11 shows the spectrogram of the
total bridge force F̂d for a single drone cycle. The plot illus-
trates the migration of energy from the lower partials to higher
frequency components. The precursors are manifested in the time-
frequency representation as formants with descending centre fre-
quencies. Also noticable is that the precursors generated with the
C3 and C2 strings together construct a joint, seamless jvari pattern,
which adds to the sense of continuity of the drone [3].

5. CONCLUDING REMARKS AND PERSPECTIVES

The proposed model permits simulation of tanpura drones with
significantly increased efficiency compared to previous models,
as such opening up possibilities for real-time implementation on

2www.socasites.qub.ac.uk/mvanwalstijn/dafx16a/

Figure 11: Spectrogram of a four-string tanpura bridge driving force sig-
nal. The strings were excited at te = 0, 1.2, 1.8, and 2.4s, respectively.

standard processors. The modal approach taken results in spectral
accuracy of the string resonance behaviour, and also facilitates ef-
ficient implementation due to the diagonality the system matrices.

Modal expansion is, of course, not a new concept in sound
synthesis, originating some decades ago as modal synthesis [25].
It also underpins the more formalised functional transformation
method [26, 13] and other modular approaches [27]. What is dif-
ferent in the approach presented here is that collision forces are
incorporated in a provably stable manner, which is of particular
importance in a real-time sound synthesis context.

The model could also be formulated in finite difference form,
for example using a parametric implicit three-point scheme for the
string [18] which can be tuned to closely approximate spectral ac-
curacy. However for the relatively simple model proposed here this
approach holds no efficiency advantages, since matrices would be
sparse rather than diagonal. In addition, the three-point form of
(30) is a less accurate approximation of the bridge contact force.

Among several possible model extensions, either in modal or
finite difference form, are (a) the simulation of sympathetic vi-
brations by also modelling the string-body coupling and (b) the
re-introduction of distributed bridge collisions which effects a pe-
riodic modulation of the central contact point between the string
and the bridge (see Fig. 2(b)). The latter is essentially a form of
effective length modulation, hence it would be sensible to con-
sider this in conjunction with tension modulation, which is relevant
given that tanpura strings are relatively loosely strung. This would
pave the way for a rigorous evaluatory comparison between the
proposed model, more complete models, and measurement data.
The literature already contains various methods for incorporating
tension modulation into modal schemes [26, 28, 27] and finite
difference formulations [29], but the proposed two-point scheme
requires re-formulation. Since such extensions will increase the
complexity and computational load of the model, real-time synthe-
sis may be viable only via hardware acceleration, such as graphical
processing units [30] or field programmable arrays [31].

Besides model refinements and extensions, the most pertinent
advance may be the implementation of a real-time virtual-acoustic
tanpura that affords real-time control options. This would allow
fine-tuning of the jvari effect by ear through on-line adjustment of
the parameters of the string, thread, and bridge, much in the same
way as real-world tanpura players set up their instrument.
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