
Step-By-Step Derivation of the Energy Balance in Equation (52)

Identities

In this derivation we make use of the following identities. For any vectors x and y we have

xTy = yTx. (B.1)

For any symmetric matrix D
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In scalar form, and denoting gn = (xn)2, the same identity reduces to
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Furthermore, for z = b, c we have
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Energy Balance

The starting point is equation (41) of the paper:
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Multiplying the left-hand side of (B.5) with (µq̄n+1

2 )T and the right-hand side with (δȳn+1
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Using (B.1),(B.2), and (B.4), and noting that the diagonal matrices A and B are per definition symmetrical, we

can write this as
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Using (B.3) and equation (29) of the paper, the term Gc is
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and using equation (30) of the paper, the term Gb can be written
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Substituting back into (B.7) yields
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(δȳn+1

2 )TBδȳn+1
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Dividing by ∆t and using equation (50) from the paper, this can be written as
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which matches equation (52) in the paper.


